Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 352, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172530

RESUMO

The Colorado potato beetle is one of the most devastating potato pests in the world. However, its viral pathogens, which might have potential in pest control, have remained unexplored. With high-throughput sequencing of Colorado potato beetle samples derived from prepupal larvae which died from an unknown infection, we have identified two previously unknown RNA viruses and assembled their nearly complete genome sequences. The subsequent genetic and phylogenetic analysis demonstrated that the viruses, tentatively named Leptinotarsa iflavirus 1 and Leptinotarsa solinvi-like virus 1, are the novel representatives of the Iflaviridae and Solinviviridae families, respectively. To the best of our knowledge, these are the first sequencing-confirmed insect viruses derived from Colorado potato beetle samples. We propose that Leptinotarsa iflavirus 1 may be associated with a lethal disease in the Colorado potato beetle.


Assuntos
Besouros , Vírus de Insetos , Solanum tuberosum , Humanos , Animais , Besouros/genética , Solanum tuberosum/genética , Filogenia , Larva/genética
2.
J Vis Exp ; (201)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38047559

RESUMO

One of the major pests of potato Solanum tuberosum L. in the temperate zone is the insect Colorado potato beetle (CPB). Most studies on the immunity and diseases of the CPB are conducted during active feeding stages. Nonetheless, there are fewer studies on resting stages, although these beetles spend most of their life cycle in a state of winter diapause (hibernation). In this work, a method for investigating CPB hibernation under natural conditions was developed and tested, offering an opportunity to collect a sufficient number of individuals in winter. In this article, CPB survival was assessed, and infectious agents at different stages of hibernation were identified. CPB mortality increased during the hibernation, reaching a maximum in April-May. Entomopathogenic fungi (Beauveria, Isaria, and Lecanicillium) and bacteria Bacillus, Sphingobacterium, Peribacillus, Pseudomonas, and Serratia were isolated from the dead insects. The survival rate of the beetles for the entire hibernation period was 61%. No frozen or desiccated beetles were found, indicating the success of the presented method.


Assuntos
Besouros , Hibernação , Solanum tuberosum , Animais , Larva , Colorado
3.
Plants (Basel) ; 12(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068575

RESUMO

The entomopathogenic endophytic fungus Beauveria bassiana can colonize plants resulting in growth promotion and protection against phytopathogenic microorganisms. However, physiological changes in potato plants (Solanum tuberosum) during this interaction are poorly understood. In the present work, gas chromatography-mass spectrometry and high-performance liquid chromatography were used to analyze sterol, fatty acid, and phenolic acid concentrations in potato plants inoculated with B. bassiana conidia in soil. We showed an increase in amounts of stigmasterol, minor sterol compounds, and some hydroxy fatty acids in leaves after the fungal treatment. Moreover, levels of hydroxycinnamic acids, especially chlorogenic acid, were elevated in roots following the B. bassiana inoculation. We propose that these changes could have been caused by oxidative reactions, and the alterations may have resulted in growth-stimulatory and protective effects of B. bassiana on the plants.

4.
Arch Insect Biochem Physiol ; 114(4): e22053, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37695720

RESUMO

Infection of intestinal tissues with Wolbachia has been found in Habrobracon hebetor. There are not many studies on the relationship between Habrobracon and Wolbachia, and they focus predominantly on the sex index of an infected parasitoid, its fertility, and behavior. The actual role of Wolbachia in the biology of Habrobracon is not yet clear. The method of complete eradication of Wolbachia in the parasitoid was developed here, and effects of the endosymbiont on the host's digestive metabolism were compared between two lines of the parasitoid (Wolbachia-positive and Wolbachia-negative). In the gut of Wolbachia+ larvae, lipases' activity was higher almost twofold, and activities of acid proteases, esterases, and trehalase were 1.5-fold greater than those in the Wolbachia- line. Analyses of larval homogenates revealed that Wolbachia+ larvae accumulate significantly more lipids and have a lower amount of pyruvate as compared to Wolbachia- larvae. The presented results indicate significant effects of the intracellular symbiotic bacterium Wolbachia on the metabolism of H. hebetor larvae and on the activity of its digestive enzymes.


Assuntos
Himenópteros , Mariposas , Vespas , Wolbachia , Animais , Larva/metabolismo , Vespas/metabolismo , Rickettsiales , Mariposas/metabolismo
5.
PeerJ ; 11: e15726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583910

RESUMO

Species of the genus Metarhizium are characterized by a multitrophic lifestyle of being arthropod parasites, rhizosphere colonizers, endophytes, and saprophytes. The process of adaptation to various organisms and substrates may lead to specific physiological alterations that can be elucidated by passaging through different hosts. Changes in virulence and cultivation properties of entomopathogenic fungi subcultured on different media or passaged through a live insect host are well known. Nevertheless, comparative in-depth physiological studies on fungi after passaging through insect or plant organisms are scarce. Here, virulence, plant colonization, hydrolytic enzymatic activities, toxin production, and antimicrobial action were compared between stable (nondegenerative) parent strain Metarhizium robertsii MB-1 and its reisolates obtained after eight passages through Galleria mellonella larvae or Solanum lycopersicum or after subculturing on the Sabouraud medium. The passaging through the insect caused similar physiological alterations relative to the plant-based passaging: elevation of destruxin A, B, and E production, a decrease in protease and lipase activities, and lowering of virulence toward G. mellonella and Leptinotarsa decemlineata as compared to the parent strain. The reisolates passaged through the insect or plant showed a slight trend toward increased tomato colonization and enhanced antagonistic action on tomato-associated bacterium Bacillus pumilus as compared to the parental strain. Meanwhile, the subculturing of MB-1 on the Sabouraud medium showed stability of the studied parameters, with minimal alterations relative to the parental strain. We propose that the fungal virulence factors are reprioritized during adaptation of M. robertsii to insects, plants, and media.


Assuntos
Metarhizium , Mariposas , Animais , Virulência , Insetos/microbiologia , Mariposas/microbiologia , Plantas
6.
Microorganisms ; 11(6)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37374996

RESUMO

Entomopathogenic endophytic ascomycetes are the most widespread and commercially promising fungi and are used to solve many problems in basic and applied research in ecology, evolution, and agricultural sciences [...].

7.
Mycotoxin Res ; 39(2): 135-149, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37071305

RESUMO

Tenuazonic acid (TeA) is synthesized by phytopathogenic and opportunistic fungi and is detected in a broad range of foods. This natural compound is of interest in terms of toxicity to animals, but its mechanisms of action on insects are poorly understood. We administered TeA orally at different concentrations (0.2-5.0 mg/[gram of a growth medium]) to the model insect Galleria mellonella, with subsequent estimation of physiological, histological, and immunological parameters in different tissues (midgut, fat body, and hemolymph). Susceptibility of the TeA-treated larvae to pathogenic microorganisms Beauveria bassiana and Bacillus thuringiensis was also analyzed. The feeding of TeA to the larvae led to a substation delay of larval growth, apoptosis-like changes in midgut cells, and an increase in midgut bacterial load. A decrease in activities of detoxification enzymes and downregulation of genes Nox, lysozyme, and cecropin in the midgut and/or hemocoel tissues were detected. By contrast, genes gloverin, gallerimycin, and galiomycin and phenoloxidase activity proved to be upregulated in the studied tissues. Hemocyte density did not change under the influence of TeA. TeA administration increased susceptibility of the larvae to B. bassiana but diminished their susceptibility to B. thuringiensis. The results indicate that TeA disturbs wax moth gut physiology and immunity and also exerts a systemic action on this insect. Mechanisms underlying the observed changes in wax moth susceptibility to the pathogens are discussed.


Assuntos
Mariposas , Ácido Tenuazônico , Animais , Larva , Mariposas/genética , Mariposas/microbiologia , Fungos
8.
Microorganisms ; 11(4)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37110366

RESUMO

Entomopathogenic fungi can be inhibited by different soil microorganisms, but the effect of a soil microbiota on fungal growth, survival, and infectivity toward insects is insufficiently understood. We investigated the level of fungistasis toward Metarhizium robertsii and Beauveria bassiana in soils of conventional potato fields and kitchen potato gardens. Agar diffusion methods, 16S rDNA metabarcoding, bacterial DNA quantification, and assays of Leptinotarsa decemlineata survival in soils inoculated with fungal conidia were used. Soils of kitchen gardens showed stronger fungistasis toward M. robertsii and B. bassiana and at the same time the highest density of the fungi compared to soils of conventional fields. The fungistasis level depended on the quantity of bacterial DNA and relative abundance of Bacillus, Streptomyces, and some Proteobacteria, whose abundance levels were the highest in kitchen garden soils. Cultivable isolates of bacilli exhibited antagonism to both fungi in vitro. Assays involving inoculation of nonsterile soils with B. bassiana conidia showed trends toward elevated mortality of L. decemlineata in highly fungistatic soils compared to low-fungistasis ones. Introduction of antagonistic bacilli into sterile soil did not significantly change infectivity of B. bassiana toward the insect. The results support the idea that entomopathogenic fungi can infect insects within a hypogean habitat despite high abundance and diversity of soil antagonistic bacteria.

9.
Viruses ; 15(2)2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36851611

RESUMO

The Colorado potato beetle (CPB) is one of the most serious insect pests due to its high ecological plasticity and ability to rapidly develop resistance to insecticides. The use of biological insecticides based on viruses is a promising approach to control insect pests, but the information on viruses which infect leaf feeding beetles is scarce. We performed a metagenomic analysis of 297 CPB genomic and transcriptomic samples from the public National Center for Biotechnology Information Sequence Read Archive (NCBI SRA) database. The reads that were not aligned to the reference genome were assembled with metaSPAdes, and 13314 selected contigs were analyzed with BLAST tools. The contigs and non-aligned reads were also analyzed with Kraken2 software. A total of 3137 virus-positive contigs were attributed to different viruses belonging to 6 types, 17 orders, and 32 families, matching over 97 viral species. The annotated sequences can be divided into several groups: those that are homologous to genetic sequences of insect viruses (Adintoviridae, Ascoviridae, Baculoviridae, Dicistroviridae, Chuviridae, Hytrosaviridae, Iflaviridae, Iridoviridae, Nimaviridae, Nudiviridae, Phasmaviridae, Picornaviridae, Polydnaviriformidae, Xinmoviridae etc.), plant viruses (Betaflexiviridae, Bromoviridae, Kitaviridae, Potyviridae), and endogenous retroviral elements (Retroviridae, Metaviridae). Additionally, the full-length genomes and near-full length genome sequences of several viruses were assembled. We also found sequences belonging to Bracoviriform viruses and, for the first time, experimentally validated the presence of bracoviral genetic fragments in the CPB genome. Our work represents the first attempt to discover the viral genetic material in CPB samples, and we hope that further studies will help to identify new viruses to extend the arsenal of biopesticides against CPB.


Assuntos
Besouros , Dicistroviridae , Inseticidas , Solanum tuberosum , Animais , Metagenoma
10.
Insects ; 13(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555078

RESUMO

Different developmental stages of insects may be dissimilar in immunity functioning. Additionally, the stages often inhabit diverse environments with specific microbial communities. In the Colorado potato beetle, a strong increase in resistance to entomopathogenic fungi is observed during the intermolt period of last-instar larvae, but mechanisms of this change are insufficiently understood. We studied changes in the expression of immunity- and stress-related genes in the fat body and integument during this intermolt period by quantitative PCR. By the end of the instar, there was upregulation of transcription factors of Toll, IMD, and Jak-Stat pathways as well as genes encoding metalloprotease inhibitors, odorant-binding proteins, and heat shock proteins. Nonetheless, the expression of gene LdRBLk encoding ß-lectin did not change during this period. Most of the aforementioned genes were upregulated in response to Metarhizium robertsii topical infection. The expression alterations were more pronounced in recently molted larvae than in finishing feeding larvae and in the integument compared to the fat body. We believe that upregulation of immune-system- and stress-related genes at the end of the intermolt period is an adaptation caused by migration of larvae into soil, where the probability of encountering entomopathogenic fungi is high.

11.
Insects ; 13(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36005361

RESUMO

Cuticular lipids protect insects from desiccation and may determine resistance to fungal pathogens. Nonetheless, the trade-off between these lipid functions is still poorly understood. The migratory locust Locusta migratoria and the Italian locust Calliptamus italicus have dissimilar hygrothermal preferences: L. migratoria inhabits areas near water bodies with a reed bed, and C. italicus exploits a wide range of habitats and prefers steppes and semideserts with the predominance of sagebrushes. This paper presents significant differences between these species' nymphs in epicuticular lipid composition (according to gas chromatography with mass spectrometry) and in susceptibility to Metarhizium robertsii and Beauveria bassiana. The main differences in lipid composition are shifts to longer chain and branched hydrocarbons (di- and trimethylalkanes) in C. italicus compared to L. migratoria. C. italicus also has a slightly higher n-alkane content. Fatty acids showed low concentrations in the extracts, and L. migratoria has a wider range of fatty acids than C. italicus does. Susceptibility to M. robertsii and the number of conidia adhering to the cuticle proved to be significantly higher in C. italicus, although conidia germination percentages on epicuticular extracts did not differ between the species. We propose that the hydrocarbon composition of C. italicus may be an adaptation to a wide range of habitats including arid ones but may make the C. italicus cuticle more hospitable for fungi.

12.
Microorganisms ; 9(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202827

RESUMO

Beauveria and Metarhizium fungi are facultative plant endophytes that provide plant growth-stimulating, immunomodulatory, and other beneficial effects. However, little is known about the level of plant colonization by these fungi under natural conditions. We assessed the endophytic colonization of potatoes (Solanum tuberosum) with entomopathogenic fungi at their natural load in soils (102-104 colony-forming units per g). Microbiological analyses of soils and plant organs, as well as a metagenomic analysis of potato roots and leaves, were conducted in three locations in Western Siberia, consisting of conventional agrosystems and kitchen gardens. The fungi were isolated at a relatively high frequency from unsterilized roots (up to 53% of Metarhizium-positive plants). However, the fungi were sparsely isolated from the internal tissues of roots, stems, and leaves (3%). Among the genus Metarhizium, two species, M. robertsii and M. brunneum, were detected in plants as well as in soils, and the first species was predominant. A metagenomic analysis of internal potato tissues showed a low relative abundance of Beauveria and Metarhizium (<0.3%), and the communities were represented primarily by phytopathogens. We suggest that colonization of the internal tissues of potatoes occurs sporadically under a natural load of entomopathogenic fungi in soils. The lack of stable colonization of potato plants with Beauveria and Metarhizium may be due to competition with phytopathogens.

13.
J Fungi (Basel) ; 7(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066637

RESUMO

Ricin-B-lectins (RBLs) have been identified in many groups of organisms, including coleopterans insects, particularly the Colorado potato beetle Leptinotarsa decemlineata (LdRBLs). We hypothesized that one of these LdRBLs (LdRBLk) may be involved in the immune response to fungal infections. We performed a theoretical analysis of the structure of this protein. Additionally, the expression levels of the LdRBlk gene were measured in L. decemlineata in response to infections with the fungi Metarhizium robertsii and Beauveria bassiana. The expression levels of LdRBlk in the L. decemlineata cuticle and fat body were increased in response to both infections. The induction of LdRBlk expression was dependent on the susceptibility of larvae to the fungi. Upregulation of the LdRBlk gene was also observed in response to other stresses, particularly thermal burns. Elevation of LdRBlk expression was frequently observed to be correlated with the expression of the antimicrobial peptide attacin but was not correlated with hsp90 regulation. Commercially available ß-lectin of ricin from Ricinuscommunis was observed to inhibit the germination of conidia of the fungi. We suggest that LdRBLk is involved in antifungal immune responses in the Colorado potato beetle, either exerting fungicidal properties directly or acting as a modulator of the immune response.

14.
MycoKeys ; 78: 79-117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854402

RESUMO

Species of Cordyceps sensu lato (Hypocreales, Sordariomycetes) have always attracted much scientific attention for their abundant species diversity, important medicinal values and biological control applications. The insect superfamilies Elateroidea and Tenebrionoidea are two large groups of Coleoptera and their larvae are generally called wireworms. Most wireworms inhabit humid soil or fallen wood and are often infected with Cordyceps s.l. However, the species diversity of Cordyceps s.l. on Elateroidea and Tenebrionoidea is poorly known. In the present work, we summarise taxonomic information of 63 Cordyceps s.l. species that have been reported as pathogens of wireworms. We review their hosts and geographic distributions and provide taxonomic notes for species. Of those, 60 fungal species are accepted as natural pathogens of wireworms and three species (Cordyceps militaris, Ophiocordyceps ferruginosa and O. variabilis) are excluded. Two new species, O. borealis from Russia (Primorsky Krai) and O. spicatus from China (Guizhou), are described and compared with their closest allies. Polycephalomyces formosus is also described because it is reported as a pathogen of wireworms for the first time. Phylogeny was reconstructed from a combined dataset, comprising SSU, LSU and TEF1-α gene sequences. The results, presented in this study, support the establishment of the new species and confirm the identification of P. formosus.

15.
PLoS One ; 16(3): e0248704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33760838

RESUMO

Gut physiology and the bacterial community play crucial roles in insect susceptibility to infections and insecticides. Interactions among Colorado potato beetle Leptinotarsa decemlineata (Say), its bacterial associates, pathogens and xenobiotics have been insufficiently studied. In this paper, we present our study of the survival, midgut histopathology, activity of digestive enzymes and bacterial communities of L. decemlineata larvae under the influence of Bacillus thuringiensis var. tenebrionis (morrissoni) (Bt), a natural complex of avermectins and a combination of both agents. Moreover, we estimated the impact of culturable enterobacteria on the susceptibility of the larvae to Bt and avermectins. An additive effect between Bt and avermectins was established regarding the mortality of the larvae. Both agents led to the destruction of midgut tissues, a decrease in the activity of alpha-amylases and alkaline proteinases, a decrease in the Spiroplasma leptinotarsae relative abundance and a strong elevation of Enterobacteriaceae abundance in the midgut. Moreover, an elevation of the enterobacterial CFU count was observed under the influence of Bt and avermectins, and the greatest enhancement was observed after combined treatment. Insects pretreated with antibiotics were less susceptible to Bt and avermectins, but reintroduction of the predominant enterobacteria Enterobacter ludwigii, Citrobacter freundii and Serratia marcescens increased susceptibility to both agents. We suggest that enterobacteria play an important role in the acceleration of Bt infection and avermectin toxicoses in L. decemlineata and that the additive effect between Bt and avermectin may be mediated by alterations in the bacterial community.


Assuntos
Bacillus thuringiensis/fisiologia , Besouros/microbiologia , Resistência a Inseticidas , Inseticidas/metabolismo , Microbiota/efeitos dos fármacos , Controle Biológico de Vetores/métodos , Animais
16.
Sci Rep ; 11(1): 1299, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446848

RESUMO

Fungal infections and toxicoses caused by insecticides may alter microbial communities and immune responses in the insect gut. We investigated the effects of Metarhizium robertsii fungus and avermectins on the midgut physiology of Colorado potato beetle larvae. We analyzed changes in the bacterial community, immunity- and stress-related gene expression, reactive oxygen species (ROS) production, and detoxification enzyme activity in response to topical infection with the M. robertsii fungus, oral administration of avermectins, and a combination of the two treatments. Avermectin treatment led to a reduction in microbiota diversity and an enhancement in the abundance of enterobacteria, and these changes were followed by the downregulation of Stat and Hsp90, upregulation of transcription factors for the Toll and IMD pathways and activation of detoxification enzymes. Fungal infection also led to a decrease in microbiota diversity, although the changes in community structure were not significant, except for the enhancement of Serratia. Fungal infection decreased the production of ROS but did not affect the gene expression of the immune pathways. In the combined treatment, fungal infection inhibited the activation of detoxification enzymes and prevented the downregulation of the JAK-STAT pathway caused by avermectins. The results of this study suggest that fungal infection modulates physiological responses to avermectins and that fungal infection may increase avermectin toxicosis by blocking detoxification enzymes in the gut.


Assuntos
Besouros/imunologia , Inseticidas/farmacologia , Intestinos/imunologia , Ivermectina/análogos & derivados , Metarhizium/imunologia , Transdução de Sinais/efeitos dos fármacos , Animais , Ivermectina/farmacologia , Transdução de Sinais/imunologia
17.
J Med Entomol ; 58(2): 773-780, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33112404

RESUMO

The toxic effects of an avermectin-impregnated fine plant powder (AIFP) against larval Aedes aegypti L. (Diptera: Culicidae), Culex modestus Ficalbi (Diptera: Culicidae), and Anopheles messeae Falleroni (Diptera: Culicidae), as well as selected nontarget aquatic invertebrates, were studied under laboratory conditions. The possibility of trophic transfer of avermectins (AVMs) through the food chain and their toxic effects on predaceous species fed AIFP-treated mosquito larvae was also evaluated. Among mosquitoes, Anopheles messeae were the most sensitive to AIFP, while Cx. modestus exhibited the least sensitivity to this formulation. Among nontarget aquatic invertebrates, the greatest toxicity of AIFP was observed for benthic species (larval Chironomus sp. Meigen (Diptera: Chironomidae), whereas predators (dragonflies, water beetles, and water bugs) exhibited the lowest AIFP sensitivity. AIFP sensitivity of the clam shrimp Lynceus brachyurus O. F. Muller (Diplostraca: Lynceidae), the phantom midge Chaoborus crystallinus De Geer (Diptera: Chaoboridae), and the mayfly Caenis robusta Eaton (Ephemeroptera: Caenidae) was intermediate and similar to the sensitivity of the mosquito Cx. modestus. However, these nontarget species were more resistant than An. messeae and Ae. aegypti. Solid-phase extraction of mosquito larvae treated with AIFP and subsequent high-performance liquid chromatography (HPLC) analysis of the extracts revealed an AVM concentration of up to 2.1 ± 0.3 µg/g. Feeding the creeping water bug Ilyocoris cimicoides L. (Hemiptera: Naucoridae) on the AIFP-treated mosquito larvae resulted in 51% mortality of the predaceous species. But no toxicity was observed for Aeshna mixta Latreille (Odonata: Aeshnidae) dragonfly larvae fed those mosquito larvae. The results of this work showed that this AVM formulation can be effective against mosquito larvae.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Culicidae/efeitos dos fármacos , Ivermectina/análogos & derivados , Aedes/efeitos dos fármacos , Animais , Anopheles/efeitos dos fármacos , Culex/efeitos dos fármacos , Monitorização de Parâmetros Ecológicos , Ephemeroptera/efeitos dos fármacos , Cadeia Alimentar , Inseticidas/farmacologia , Inseticidas/toxicidade , Invertebrados/efeitos dos fármacos , Ivermectina/farmacologia , Ivermectina/toxicidade , Larva/efeitos dos fármacos , Controle de Mosquitos , Odonatos/efeitos dos fármacos , Pós/farmacologia
18.
PeerJ ; 8: e9895, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32995085

RESUMO

Rhizoctonia potato disease is widespread in the world and causes substantial yield and quality losses in potato. This study aimed to evaluate the efficacy of entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana in the inhibition of potato Rhizoctonia complex disease. The efficacy of the entomopathogenic fungi M. robertsii and B. bassiana in the defense of potato against Rhizoctonia disease (stem cancer, black scrulf and other forms of manifestation on tubers) was estimated under field conditions in Western Siberia. Preplanting treatment of the tubers with B. bassiana decreased Rhizoctonia disease in the stems and stolons. At the same time, treatment with M. robertsii did not cause a decrease in Rhizoctonia disease in these organs. However, both fungi decreased the sclerotium index on the tubers of new crops. We demonstrated two mechanisms of inhibition of Rhizoctonia solani by M. robertsii and B. bassiana, including (1) direct effect, expressed as inhibition of R. solani sclerotium formation in cocultivation assays, and (2) indirect effect, which is associated with increased peroxidase activity in potato roots under the influence of colonization by entomopathogenic fungi. We suggest that the treatment of seed tubers with B. basiana can effectively manage Rhizoctonia disease during the plant vegetative season and that both fungi significantly improve the quality of the new tuber crop.

19.
J Fungi (Basel) ; 6(3)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927906

RESUMO

Various insect bacterial associates are involved in pathogeneses caused by entomopathogenic fungi. The outcome of infection (fungal growth or decomposition) may depend on environmental factors such as temperature. The aim of this study was to analyze the bacterial communities and immune response of Galleria mellonella larvae injected with Cordyceps militaris and incubated at 15 °C and 25 °C. We examined changes in the bacterial CFUs, bacterial communities (Illumina MiSeq 16S rRNA gene sequencing) and expression of immune, apoptosis, ROS and stress-related genes (qPCR) in larval tissues in response to fungal infection at the mentioned temperatures. Increased survival of larvae after C. militaris injection was observed at 25 °C, although more frequent episodes of spontaneous bacteriosis were observed at this temperature compared to 15 °C. We revealed an increase in the abundance of enterococci and enterobacteria in the midgut and hemolymph in response to infection at 25 °C, which was not observed at 15 °C. Antifungal peptide genes showed the highest expression at 25 °C, while antibacterial peptides and inhibitor of apoptosis genes were strongly expressed at 15 °C. Cultivable bacteria significantly suppressed the growth of C. militaris. We suggest that fungi such as C. militaris may need low temperatures to avoid competition with host bacterial associates.

20.
Microb Pathog ; 141: 103995, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31988006

RESUMO

Entomopathogenic fungi form different strategies of interaction with their insect hosts. The influence of fungal infection on insect physiology has mainly been studied for generalists (Metarhizium, Beauveria), but studies of specialized teleomorphic species, such as Cordyceps militaris, are rare. We conducted a comparative analysis of the immune reactions of the wax moth Galleria mellonella after injection with blastospores of C. militaris (Cm) and Metarhizium robertsii (Mr) in two doses (400 and 4000 per larva). Cm-injected insects died more slowly and were more predisposed to bacterial infections than Mr-injected insects. It was shown that Cm infection led to a predominance of necrotic death of hemocytes, whereas Mr infection led to apoptotic death of cells. Cm-infected insects produced more dopamine and reactive oxygen species compared to Mr-infected insects. Moreover, Cm injection led to weak inhibition of phenoloxidase activity and slight enhancement of detoxification enzymes compared to Mr-injected insects. Blastospores of Cm that were cultivated in artificial medium (in vitro) and proliferated in wax moth hemolymph (in vivo) were characterized by equal intensity of fluorescence after staining with Calcofluor White. In contrast, Mr blastospores that proliferated in the wax moth had decreased fluorescence intensity compared to Mr blastospores grown in medium. The results showed that insects combat Cm infection more actively than Mr infection. We suggest that Cm uses fewer universal tools of killing than Mr, and these tools are available because of specific interactions of Cm with hosts and adaptation to certain host developmental stages.


Assuntos
Hypocreales , Mariposas/microbiologia , Micoses/imunologia , Animais , Apoptose , Cordyceps/imunologia , Dopamina/metabolismo , Hemócitos/metabolismo , Hemócitos/microbiologia , Interações Hospedeiro-Patógeno , Hypocreales/imunologia , Hypocreales/patogenicidade , Imunidade , Larva/imunologia , Larva/microbiologia , Metarhizium/imunologia , Monofenol Mono-Oxigenase/metabolismo , Mariposas/imunologia , Necrose , Espécies Reativas de Oxigênio/metabolismo , Esporos Fúngicos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...